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In the present article, we provide a brief review of current knowledge regarding the

effects induced by physical exercise on hippocampus. Research involving animals and

humans supports the view that physical exercise, enhancing hippocampal neurogenesis

and function, improves cognition, and regulates mood. These beneficial effects depend

on the contribute of more factors including the enhancement of vascularization and

upregulation of growth factors. Among these, the BDNF seems to play a significant

role. Another putative factor that might contribute to beneficial effects of exercise is the

orexin-A. In support of this hypothesis there are the following observations: (1) orexin-A

enhances hippocampal neurogenesis and function and (2) the levels of orexin-A increase

with physical exercise. The beneficial effects of exercise may represent an important

resource to hinder the cognitive decline associated with the aging-related hippocampal

deterioration and ameliorate depressive symptoms.
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INTRODUCTION

Formany years, researchers believed that neurogenesis, i.e., the production of new neurons through
the division of stem cells within the brain, takes place only during embryonic development and
not when the brain is fully developed. However, in recent decades, experimental evidence has
shown that neurogenesis occurs also in the adult brain in two particular regions: the olfactory
bulb, involved in the perception of odors, and the hippocampus, mainly involved in memory
consolidation (Whitman and Greer, 2009; Kempermann et al., 2015). In the hippocampus,
multipotent undifferentiated neural stem cells, located in the subgranular zone of the dentate gyrus,
give rise to neural progenitor cells. These cells proliferate and migrate into the granule cell layer
and differentiate into neurons, astroglia, or oligodendrocytes. The newborn neurons project into
the CA3 region where they are integrated in functional circuits (Gage, 2000; Kempermann et al.,
2004). A seminal study by Eriksson et al. (1998) provided direct evidence for adult neurogenesis
in humans. These authors (Eriksson et al., 1998) obtained postmortem human brain tissue from
adult patients who received, for diagnostic purposes, bromodeoxyuridine that labels DNA during
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the S phase. Eriksson et al. (1998) demonstrated that new neurons
were generated from dividing progenitor cells in the dentate
gyrus. Spalding et al. (2013) estimated that about 700 new
neurons are added in each hippocampus per day.

EXERCISE AND HIPPOCAMPUS: ANIMAL
MODEL

Hippocampal neurogenesis is favored by many factors,
including environmental enrichment and voluntary exercise and
associative learning (Kempermann et al., 1997, 1998; van Praag
et al., 1999a,b, 2005). Regarding the enriched environment,
it is a complex combination of social, cognitive, and physical
stimulations. van Praag et al. (1999b) attempted to disentangle
such components and observed that voluntary exercise doubled
the number of surviving newborn cells in amounts similar to
enrichment condition. Then, van Praag et al. (1999b) suggested
that voluntary exercise was sufficient for enhanced neurogenesis
in the adult mouse dentate gyrus. Interestingly, the effect
of exercise on neurogenesis appears to be restricted to the
hippocampus. This was demonstrated by Brown et al. (2003)
who found that voluntary exercise selectively doubled the
amount of new granule cells in the hippocampus, but it did
not modify the number of adult-generated olfactory granule
cells. Another effect of exercise is the increase of cerebral blood
volume of the dentate gyrus in mice (Pereira et al., 2007). This
increase was considered an in vivo correlate of neurogenesis since
it correlated with postmortem measurements of neurogenesis
(Pereira et al., 2007). Hippocampal neurogenesis diminishes with
aging (Kuhn et al., 1996; Heine et al., 2004). However, van Praag
et al. (2005) suggested that this decrease may be partially opposed
by exercise. The Authors (van Praag et al., 2005) reported that
in aged running mice voluntary exercise enhanced hippocampal
neurogenesis and learning. Interestingly, the morphology of
new neurons did not differ between young and aged runners,
supporting the hypothesis that local hippocampal environment
of the aged dentate gyrus is effective in sustaining neurogenesis
(van Praag et al., 2005). Some researchers investigated the
effects of hyppocampal lesion on behavioral performance.
Clark et al. (2008) irradiated with gamma rays the region of
mice hippocampus reducing neurogenesis by 50%, whereas
in non-irradiated animals running increased neurogenesis
fourfold. Furthermore, irradiation selectively eliminated gains
in water maze performance that depends on hippocampus.
However, the decrease in neurogenesis and cognitive skills
induced by irradiation could be mitigated by exercise (Ji et al.,
2014). Rats who received whole-brain irradiation and, following
irradiation, were forced to perform exercise showed a significant
amelioration of the impaired neurogenesis and cognition (Ji
et al., 2014).

The morphological and functional changes in hippocampus
produced by exercise likely depend on the contribute of
different factors, including the enhancement of vascularisation,
the involvement of growth factors and the regulation of
the expression in a variety of gene transcripts. Exercise
upregulates expression of brain-derived neurotrophic factor

(BDNF), vascular endothelial growth factor (VEGF), and
insulin-like growth factor-1 (IGF-1). Among these, the BDNF
is considered to be the most important factor. A lot of studies
suggest that the upregulation of BDNF play an significant role
in hippocampal neurogenesis, synaptic plasticity and learning
(Neeper et al., 1995; Cotman and Berchtold, 2002; Vaynman et al.,
2004; Cotman et al., 2007).

EXERCISE AND HIPPOCAMPUS: HUMANS

An interesting and fruitful line of research in recent years has
investigated the influence of exercise on cognitive functions
in humans. Exercise may enhance cognitive functions both in
young, e.g., improving verbal memory and performance in a
map recognition (Grego et al., 2005; Pereira et al., 2007; Winter
et al., 2007), and in older adults, e.g., enhancing efficiency of
attentional (Kramer et al., 1999) and executive-control processes
(Colcombe and Kramer, 2003). Pereira et al. (2007) found that in
humans (21–45 years) exercise selectively increased the cerebral
blood volume of the dentate gyrus. This increase correlated
with improved verbal memory. Intriguingly, Griffin et al. (2011)
found that acute and chronic exercise enhanced the performance
of young (22 ± 2 years), sedentary (i.e., not involved in any
regular physical training) men in the face–name matching task
(associative memory) and not in the Stroop task (executive
functions). Note that face–name matching task recruits the
hippocampus and associated structures of the medial temporal
lobe (Zeineh et al., 2003; Kirwan and Stark, 2004), whereas the
Stroop word–color task the anterior cingulate cortex and other
frontal regions (Leung et al., 2000). However, other researchers
reported post-exercise improvements also in the performance of
the Stroop word and color tests (Ferris et al., 2007).

As concerns cognitive functions in older adults, in general,
healthy older adults with higher fitness levels have less cognitive
decline (Yaffe et al., 2001; Barnes et al., 2003) and reduced risk for
dementia and Alzheimer’s disease (Podewils et al., 2005; Larson
et al., 2006) than those with lower fitness levels. In older humans,
imaging studies showed that exercise not only spared brain
volume but also increased both gray and white matter volume
in the prefrontal and temporal cortices, i.e., those same regions
that are often reported to deteriorate with aging (Colcombe
et al., 2006; Rosano et al., 2010) and be severely affected in
Alzheimer’s disease (Galeone et al., 2011; Chieffi et al., 2014a,b,
2015; Chieffi, 2016a). The integrity of these regions play central
roles in successful everyday functioning. Prefrontal regions are
associated with workingmemory and executive functions (Chieffi
et al., 2008, 2012; Godefroy et al., 2008; Roca et al., 2010) and
temporal lobes with long-term memory function (Jeneson and
Squire, 2011; Lech and Suchan, 2013).

Exercise has also beneficial effects on the hippocampus, a brain
region particularly sensitive to age-related decay. Hippocampus
shrinks with age (Raz et al., 2005) and its atrophy predicts
shorter time-to-progression from mild cognitive impairment to
Alzheimer’s dementia (Jack et al., 2010). Erickson et al. (2011)
reported that older (55–80 years) individuals with higher levels
of aerobic fitness were associated with greater volume of the
hippocampus and displayed better spatial memory performance
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than individuals with lower fitness levels. One year aerobic
exercise intervention was effective in increasing the size of the
anterior hippocampus by 2% (Erickson et al., 2011), contrasting
with the reported 1–2% annual hippocampal volume shrinkage
in older adults without dementia (Raz et al., 2005). Gains in
hippocampal blood flow and memory performance were also
observed in healthy sedentary adults (57–75 years) with shorter
term exercise (3 months) by Chapman et al. (2013). More
researches reported that exercise increased BDNF concentrations
in the serum suggesting a key role for this neurotrophic factor in
enhancing hippocampal volume and cognitive function (Ferris
et al., 2007; Erickson et al., 2011; Griffin et al., 2011).

EXERCISE, OREXIN, AND HIPPOCAMPUS

Another factor that acting on the hippocampus might contribute
to the beneficial effects of physical exercise on cognition
is the orexin-A. The orexin-A/hypocretin-1 (OxA/Hcrt-1)
and orexin-B/hypocretin-2 (OxB/Hcrt-2) are neuropeptides
synthesized by a cluster of neurons in the lateral hypothalamus.
Orexins selectively act on two G protein-coupled receptors:
the orexin/hypocretin 1 receptor (Ox1R/HcrtR1), which has
higher affinity to orexin-A, and the orexin/hypocretin 2 receptor
(Ox2R/HcrtR2), which has equal affinity to both orexin-A and
orexin-B (Sakurai et al., 1998; Scammell and Winrow, 2011).
Ox1R and Ox2R are generally excitatory, being the common
cellular response to their activation an increase of intracellular
calcium (Gotter et al., 2012). Furthermore, orexin receptors
may mediate both acute and long-lasting effects (Scammell
and Winrow, 2011). Acute effects depend on several ionic
mechanisms, such as the inhibition of potassium channels and
the activation of a sodium/calcium exchanger; long-lasting effects
by increasing the number of N-methyl-D-aspartate (NMDA)
receptors in the cell membrane and making the neurons more
responsive to the excitatory effects of glutamate for several hours
(Scammell and Winrow, 2011). Ox1Rs are widely expressed
throughout the brain, including hippocampal formation,
dorsal raphe nucleus and locus coeruleus, while Ox2Rs are
found mainly in the cerebral cortex, nucleus accumbens, and
subthalamic and paraventricular thalamic nuclei (Trivedi et al.,
1998; Marcus et al., 2001). Orexinergic neurons receive a variety
of signals related to environmental, physiological, and emotional
stimuli (Yoshida et al., 2006; Scammell and Winrow, 2011;
Marra et al., 2013; Franco et al., 2014), and project broadly to the
entire CNS. Orexinergic projections are involved in regulating
wakefulness and arousal (Saper et al., 2005), motivation and
emotions (Sakurai and Mieda, 2011; Thompson and Borgland,
2011; Boscia et al., 2015), and motor and autonomic functions
(Nattie and Li, 2012; Messina et al., 2013, 2014b, 2015a,b;
Messina A. et al., 2016). Orexinergic system may also induce
structural changes in the hippocampus influencing hippocampal
learning and memory processes. In support of this view Wayner
et al. (2004) reported that local dentate gyrus perfusion with
orexin-A enhanced long-term potentiation (LTP) in anesthetized
rats, suggesting that orexins positively regulate hippocampal
synaptic plasticity. Furthermore, the authors (Wayner et al.,
2004) showed that this improvement was blocked when rats were

pretreated with SB-334867, a specific Ox1R antagonist (Wayner
et al., 2004). The effects of dentate gyrus-OX1Rs antagonization
on LTP occurred also in freely moving rats (Akbari et al., 2011).
Subsequently, Akbari et al. (2007, 2008) showed that blockade
of Ox1Rs with SB-334867 in CA1 and in dentate gyrus regions
impaired spatial memory in Morris water maze, suggesting
endogenous orexin-A positively modulated the performance of
learning tasks via Ox1Rs. Some studies examined the effects of
orexin-A in rats in which the administration of Pentylenetetrazol
(PTZ) induced seizures resulting in the hippocampal atrophy,
learning and memory deficits and decrease of cerebrospinal
fluid-level of orexin-A. Note that the levels of orexin-A in
cerebrospinal fluid are decreased in patients after repetitive
seizures (Rejdak et al., 2009). Zhao et al. (2014) observed that
the intracerebroventricular (i.c.v.) injection of orexin-A in
PTZ-kindled rats attenuated the impairment of spatial learning
and memory. Furthermore, they (Zhao et al., 2014) showed that
orexin-A enhanced neurogenesis in the dentate gyrus promoting
neuronal proliferation and differentiation. Interestingly, in
rats treated with orexin-A more than 50% of newborn cells
differentiated into neurons, but only ∼30% of the newborn
cells differentiated into neurons in the control group. This
suggested that orexin-A not only stimulated cell proliferation
but also promoted the differentiation of newborn cells (Zhao
et al., 2014). Recently, Yang et al. (2013) showed that orexin-A is
also implicated in social memory, i.e., the ability to distinguish
and remember familiar from novel conspecifics. The authors
(Yang et al., 2013) used orexin/ataxin-3-transgenic (AT) mice, in
which orexin neurons degenerate by 3 months of age (Hara et al.,
2001). Compared with their wild-type (WT) littermates, AT
mice displayed deficits in long-term social memory. However,
nasal administration of exogenous orexin-A restored social
memory and enhanced synaptic plasticity in the hippocampus
(Yang et al., 2013). Interestingly, Yang et al. (2013) found in
the AT hippocampus an attenuation of LTP and a decrease
of phosphorylated CREB (pCREB) levels. The authors (Yang
et al., 2013) suggested that the alteration of these processes
might underlie the long-term social memory deficit in AT mice.
According previous studies showed that the formation of long-
term memory in several hippocampus-dependent cognitive tasks
involve CREB phosphorylation (Kogan et al., 2000; Nomoto
et al., 2012) and neurotransmitters such as dopamine, serotonin,
and acetylcholine, which enhance memory, induce CREB
phosphorylation (Kogan et al., 2000; Shirayama and Chaki,
2006). Recently, it was reported that also orexin-B can improve
memory processes. Palotai et al. (2014) showed that the i.c.v.
administration of orexin-B in rats improved learning, memory
consolidation and retrieval, in a dose-dependent manner.
The action of orexin-B on memory functions was further
supported by the observation that rats pretreated with the EMPA
(N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulphonyl)-
amino]-N-pyri-din-3-ylmethyl-acetamide), a selective Ox2R
antagonist, reversed completely memory consolidation.

Physical exercise produces an increase of orexin-A level in
cerebrospinal fluid of rats (Martins et al., 2004), dogs (Wu
et al., 2002), and cats (Kiyashchenko et al., 2002). An increase
of plasmatic orexin-A with exercise was reported in humans
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(Messina et al., 2014a; Messina G. et al., 2016). Messina et al.
(2014a) collected blood samples from adult participants before
(time 0 min) and after (times 15 and 30min) a cycle ergo meter
exercise at 75W for 15min. Results showed that the post-exercise
values of orexin-A were significantly higher compared to pre-
exercise values. The source of peripheral orexin is still unclear.
Tsunematsu and Yamanaka (2012) proposed that orexin A might
be directly released from the pituitary into the blood stream,
since orexin-immunoreactive fibers are present in the median
eminence and pituitary (Date et al., 1999), or leaked from the
cerebrospinal fluid. Furthermore, orexin-A may rapidly cross
the blood-brain barrier from brain tissue to reach blood by
the process of simple diffusion, being highly lipophilic (Kastin
and Akerstrom, 1999). Peripheral tissues may represent another
source of peripheral orexin. Orexin-immunoreactive cells are
observed in the gastrointestinal tract and pancreas (Nakabayashi
et al., 2003).

As a whole the experimental data we have reported allow to
hypothesize that the increase of orexin-A levels with exercise
may contribute to improve cognition, enhancing hippocampal
plasticity, and function.

Experimental evidence also suggests that physical exercise,
besides improving cognition, has beneficial effects on mood
regulation. In support of an antidepressant effect of exercise there
are exhaustive reviews (Blake et al., 2009; Bridle et al., 2012;
Mura et al., 2014; Kvam et al., 2016). Interestingly, patients with
depression showed smaller hippocampal volumes (Steffens et al.,
2000; Sheline, 2003) and an increase in hippocampus volume
following exercise was positively associated with depressive
symptoms improvement (Krogh et al., 2014).

Orexin-A, as well as BDNF, might contribute to beneficial
effects on mood regulation induced by exercise (Chieffi, 2016b).
Wistar-Kyoto (WKY) rats represent a genetic animal model of
depression. They have fewer (about 18%) and smaller (about
15%) orexin-A neurons in the hypothalamus compared to
control Wistar rats (Allard et al., 2004). These observations were
in line with the observation of Taheri et al. (2001) who reported
a decrease of about 22% in hypothalamic prepro-orexin mRNA
in WKY rats. Some studies have investigated the links between
orexins, depression, and hippocampal neurogenesis. Arendt et al.
(2013) found that mice displaying an increase of immobility
in the forced swim test (FST), a commonly used measure
of depressive behavior, had lower hippocampal expression of
orexin-A. Furthermore, the i.c.v. administration of orexin-A led
to a significant reduction in animal immobility in the FST and
an increase in the number of cells in the dentate gyrus (Ito
et al., 2008). Ito et al. (2008) suggested that the enhancement
of cell proliferation in the dentate gyrus by orexin-A might
have an antidepressive-like effect. Furthermore, the treatment
with the OXR1 antagonist SB-334867 blocked both the orexin-
A-induced decrease in the FST immobility and the increase in
the number of cells in the dentate gyrus. In humans, Brundin
et al. (2007a) showed that suicidal patients with major depression
exhibit significantly lower orexin-A levels in the cerebrospinal
fluid. In addition, low levels of orexin-A in the cerebrospinal fluid
are related to pronounced symptoms of inertia and lassitude in
suicide attempters (Brundin et al., 2007b).

Experimental evidence suggests the BDNF may have
antidepressant-like effects. Shirayama et al. (2002) showed
that the infusion of BDNF into the rat hippocampus
decreased immobility in the FST. Furthermore, Karege
et al. (2005) found that suicidal patients with depression
had reduced BDNF levels in their hippocampus. An important
question is whether the orexin and BDNF mechanisms
interact. To our knowledge, this issue has been addressed
only by Yamada et al. (2009) who applied orexin-A and
orexin-B to cortical neuron cultures. They found that
orexin-B, but not orexin-A, increased the mRNA expression
of BDNF.

Taken together, the experimental observations we reported
support the view that the orexin-A, as well as the BDNF, might
contribute to the beneficial effects of exercise on mood regulation
(see Figure 1).

CONCLUSIONS

In this brief review, we have reported studies that support the
view that physical exercise is an effective tool for enhancing
cognitive performance and regulating mood. Exercise would
induce morphological and functional changes of brain regions
that play central roles in successful everyday functioning, such
as frontal and temporal cortices, and the hippocampus located in
the inner (medial) region of the temporal lobe. The frontal lobe is
critical for executive functions (Chieffi et al., 2004, 2009; Iavarone
et al., 2007), the temporal lobe for long-term memory skills
(Jeneson and Squire, 2011; Lech and Suchan, 2013). The study of
exercise-induced hippocampal changes has particularly attracted
the interest of many research groups as the hippocampus, along
with the olfactory bulb, is the place in the adult in which
mammalian brain continues to generate new neurons throughout
life (Whitman and Greer, 2009; Kempermann et al., 2015).
Thus, it is very important to define accurately the factors that
support neurogenesis and are enhanced by exercise. The factors
most likely involved in exercise-induced hippocampal changes
are the microcirculation and the production of growth factors.
Another putative factor that might contribute to the beneficial
effects of exercise is the orexin-A. In favor of this hypothesis,
as previously reported, there are the following observations:
(1) orexinergic neurons have connections to regions involved
in cognition and mood regulation such as the hippocampus;
(2) orexin-A enhances hippocampal neurogenesis and functions;
(3) orexin-A levels increase with exercise. However, currently
several important questions remain unanswered: Is the orexin-
A necessary for hippocampal neurogenesis? Does the systemic
administration of orexin-A mimic exercise-induced effects
related to neurogenesis, hippocampal structure and function?
Does the orexin-A mechanism relate to other mechanisms? E.g.,
as suggested by an anonymous reviewer, does the administration
of an orexin-A antagonist also inhibit exercise-induced increases
in BDNF? Future experiments are needed to answer these
questions.

Interestingly, regions that benefit from exercise are also
those same regions that deteriorate with aging, loading to a
decline in a broad array of cognitive processes. Several studies
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FIGURE 1 | A Schematic diagram to illustrate as Orexin-A and BDNF might contribute to cognitive and mood improvements induced by exercise.

found that exercise is an effective tool in slowing cognitive
decline (Erickson et al., 2011; Chapman et al., 2013) and in
emotional regulation (Blake et al., 2009; Mura et al., 2014;
Kvam et al., 2016). Given the projected increase in the number
of adults surviving to advanced age, and the staggering costs
of caring for older individuals who suffer from neurological
decline and mood disorders, physical activity may represent a
simple, but effective and low cost, therapeutic intervention to
improve neurocognitive and emotional functions. Furthermore,
physical activity is accessible to most adults and is not plagued

by intolerable side effects often found with pharmaceutical
treatments.
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